overview

Ring → Ideal → Module → Field → Extension → Galois Theory


  • 기초 대수 구조

  • Group

    • Subgroup
    • Normal Subgroup
    • Quotient Group
    • Homomorphism / Isomorphism Theorems
    • Ring

    • Commutative Ring / Noncommutative Ring

    • Ring with Unity
    • Subring
    • Zero Divisors / Integral Domain
    • Field

  • Ideal (아이디얼)

  • 정의와 성질

    • Additive Subgroup
    • Absorption Law
    • 종류

    • Left / Right / Two-sided Ideal

    • Principal Ideal
    • Prime Ideal
    • Maximal Ideal
    • Radical / Nilradical / Jacobson Radical
    • Primary Ideal
    • 연산

    • Sum / Product / Intersection

    • Colon Ideal \((I : J)\)
    • Ideal Quotient
    • 구조적 특성

    • Ideal Generated by a Set

    • Principal Ideal Domain (PID)
    • Noetherian Ring
    • 동치와 몫

    • Congruence Modulo Ideal

    • Quotient Ring \(R/I\)
    • Homomorphism & First Isomorphism Theorem
    • 특수 맥락

    • Polynomial Ring에서의 Ideal

    • Multivariate Ideal / Gröbner Basis
    • Hilbert Basis Theorem
    • Affine Variety와 Ideal의 대응 (Nullstellensatz)

  • Module (가군)

  • \(R\)-Module 정의

  • Submodule
  • Quotient Module
  • Free / Finitely Generated Module
  • Exact Sequence
  • Hom and Tensor Functor
  • Noetherian Module

  • Field Theory

  • Field Extension

    • Simple Extension
    • Algebraic vs Transcendental
    • Algebraic Closure
    • Degree of Extension
    • Tower Law
    • Minimal Polynomial
    • Splitting Field
    • Separable vs Inseparable Extensions

  • Galois Theory

  • Galois Extension

    • 정의: Normal + Separable
    • Fixed Field / Automorphism Group
    • Fundamental Theorem of Galois Theory

    • 중간체 ↔ 부분군 대응

    • Galois Group

    • \(\text{Gal}(E/F)\)

    • Solvable Group과 방정식의 해법
    • Application

    • 정다각형 작도 가능성

    • 방정식의 근의 대수적 표현 가능성
    • 고차 다항식의 근불가능성 증명
    • Examples

    • \(\mathbb{Q}(\sqrt{2})\)

    • \(\mathbb{Q}(\zeta_n)\)
    • Cyclotomic Extension
    • Finite Fields와 Galois Group