overview
Ring → Ideal → Module → Field → Extension → Galois Theory
-
기초 대수 구조
-
Group
- Subgroup
- Normal Subgroup
- Quotient Group
- Homomorphism / Isomorphism Theorems
-
Ring
-
Commutative Ring / Noncommutative Ring
- Ring with Unity
- Subring
- Zero Divisors / Integral Domain
- Field
-
Ideal (아이디얼)
-
정의와 성질
- Additive Subgroup
- Absorption Law
-
종류
-
Left / Right / Two-sided Ideal
- Principal Ideal
- Prime Ideal
- Maximal Ideal
- Radical / Nilradical / Jacobson Radical
- Primary Ideal
-
연산
-
Sum / Product / Intersection
- Colon Ideal \((I : J)\)
- Ideal Quotient
-
구조적 특성
-
Ideal Generated by a Set
- Principal Ideal Domain (PID)
- Noetherian Ring
-
동치와 몫
-
Congruence Modulo Ideal
- Quotient Ring \(R/I\)
- Homomorphism & First Isomorphism Theorem
-
특수 맥락
-
Polynomial Ring에서의 Ideal
- Multivariate Ideal / Gröbner Basis
- Hilbert Basis Theorem
- Affine Variety와 Ideal의 대응 (Nullstellensatz)
-
Module (가군)
-
\(R\)-Module 정의
- Submodule
- Quotient Module
- Free / Finitely Generated Module
- Exact Sequence
- Hom and Tensor Functor
- Noetherian Module
-
Field Theory
-
Field Extension
- Simple Extension
- Algebraic vs Transcendental
- Algebraic Closure
- Degree of Extension
- Tower Law
- Minimal Polynomial
- Splitting Field
- Separable vs Inseparable Extensions
-
Galois Theory
-
Galois Extension
- 정의: Normal + Separable
- Fixed Field / Automorphism Group
-
Fundamental Theorem of Galois Theory
-
중간체 ↔ 부분군 대응
-
Galois Group
-
\(\text{Gal}(E/F)\)
- Solvable Group과 방정식의 해법
-
Application
-
정다각형 작도 가능성
- 방정식의 근의 대수적 표현 가능성
- 고차 다항식의 근불가능성 증명
-
Examples
-
\(\mathbb{Q}(\sqrt{2})\)
- \(\mathbb{Q}(\zeta_n)\)
- Cyclotomic Extension
- Finite Fields와 Galois Group